Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(24): 9350-9359, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37277115

RESUMO

In search for chemically stable americium compounds with high power densities for radioisotope sources for space applications, AmVO3 and AmVO4 were prepared by a solid-state reaction. We present here their crystal structure at room temperature solved by powder X-ray diffraction combined with Rietveld refinement. Their thermal and self-irradiation stabilities have been studied. The oxidation states of americium were confirmed by the Am M5 edge high-resolution X-ray absorption near-edge structure (HR-XANES) technique. Such ceramics are investigated as potential power sources for space applications like radioisotope thermoelectric generators, and they have to endure extreme conditions including vacuum, high or low temperatures, and internal irradiation. Thus, their stability under self-irradiation and heat treatment in inert and oxidizing atmospheres was tested and discussed relative to other compounds with a high content of americium.

2.
CrystEngComm ; 24(36): 6338-6348, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36275942

RESUMO

This paper details the first dedicated production of homogeneous nanocrystalline particles of mixed actinide oxide solid solutions containing americium. The target compositions were U0.75Pu0.20Am0.05O2, U0.90Am0.10O2 and U0.80Am0.20O2. After successful hydrothermal synthesis and chemical characterisation, the nanocrystals were sintered and their structure and behaviour under self-irradiation were studied by powder XRD. Cationic charge distribution of the as-prepared nanocrystalline and sintered U0.80Am0.20O2 materials was investigated applying U M4 and Am M5 edge high energy resolution XANES (HR-XANES). Typical oxidation states detected for the cations are U(iv)/U(v) and Am(iii)/Am(iv). The measured crystallographic swelling was systematically smaller for the as-synthesised nanoparticles than the sintered products. For sintered pellets, the maximal volumetric swelling was about 0.8% at saturation, in line with literature data for PuO2, AmO2, (U,Pu)O2 or (U,Am)O2.

3.
Adv Mater ; 33(16): e2005206, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33751709

RESUMO

Since 1970, people have been making every endeavor to reduce toxic emissions from automobiles. After the development of a three-way catalyst (TWC) that concurrently converts three harmful gases, carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx ), Rh became an essential element in automobile technology because only Rh works efficiently for catalytic NOx reduction. However, due to the sharp price spike in 2007, numerous efforts have been made to replace Rh in TWCs. Nevertheless, Rh remains irreplaceable, and now, the price of Rh is increasing significantly again. Here, it is demonstrated that PdRuM ternary solid-solution alloy nanoparticles (NPs) exhibit highly durable and active TWC performance, which will result in a significant reduction in catalyst cost compared to Rh. This work provides insights into the design of highly durable and efficient functional alloy NPs, guiding how to best take advantage of the configurational entropy in addition to the mixing enthalpy.

4.
J Am Chem Soc ; 142(3): 1247-1253, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31750648

RESUMO

Transition metal carbides have attractive physical and chemical properties that are much different from their parent metals. Particularly, noble metal carbides are expected to be promising materials for a variety of applications, particularly as efficient catalysts. However, noble metal carbides have rarely been obtained because carbide phases do not appear in noble metal-carbon phase diagrams and a reasonable synthesis method to make noble metal carbides has not yet been established. Here, we propose a new synthesis method for noble metal carbides and describe the first synthesis of rhodium carbide using tetracyanoethylene (TCNE). The rhodium carbide was synthesized without extreme conditions, such as the very high temperature and/or pressure typically required in conventional carbide syntheses. Moreover, we investigated the electronic structure and catalytic activity for the hydrogen evolution reaction (HER). We found that rhodium carbide has much higher catalytic activity for HER than pure Rh. Our study provides a feasible strategy to create new metal carbides to help advance the field of materials science.

5.
Inorg Chem ; 57(16): 10072-10080, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30063136

RESUMO

Metal-organic frameworks (MOFs) provide highly selective catalytic activity because of their porous crystalline structure. There is particular interest in metal nanoparticle-MOF composites (MNP@MOF) that could take advantage of synergistic effects for enhanced catalytic properties. We present an investigation into the local geometry and electronic properties of thermally decomposed Ni-MOF-74 calcined at different temperatures and time durations. Pair distribution function analysis using high-energy X-ray diffraction reveals the formation of fcc-Ni nanoparticles with a mixture of MOF phase in samples heated at 623 K for 12 h. Elevating the calcination temperature and lengthening the time duration assisted complete precipitation of Ni nanoparticles in the MOF matrix. Local structures and valence states were investigated using X-ray absorption fine structure spectroscopy. Evidence of ligand-to-metal charge transfer and gradual reduction of Ni2+ is apparent for those samples heated above 623 K for 12 h. In addition, the Ni lattice was found to be slightly compressed as a result of surface stresses in the nanosized particles or surface ligand environment. Electronic structure investigation using hard X-ray photoelectron spectroscopy shows a significant narrowing of the valence band and a decrease in the d-band center (toward the Fermi level) when the heating temperature is increased, thus suggesting promising catalytic properties for NiNP@MOF composite.

6.
Nanoscale ; 9(18): 6094-6102, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28447095

RESUMO

In this work, multifunctional oxide NdNiO3 (NNO) thin films grown on a SrTiO3 (STO) substrate using pulsed-laser deposition are studied. Temperature dependent resistivity measurements revealed that NNO/STO samples exhibit a sharp thickness dependent metal-insulator transition (MIT) over a range of 150-200 K. It is known that the electronic properties of correlated oxides are extremely complex and sensitive to changes in orbital occupancy. To evaluate the changes in the electronic and/or crystallographic structure responsible for the MIT, a site-selective (O, Ni and Nd) X-ray absorption near edge structure (XANES) analysis is performed above and below the transition temperature. Analysis of XANES spectra suggests that: (i) in NNO films nominally trivalent Ni ions exhibit multiple valency (bond disproportionation), (ii) intermetallic hybridization plays an important role, (iii) the presence of strong O 2p-O 2p hole correlation at low temperature results in the opening of the p-p gap and (iv) the valency of Nd ions matches well with that of Nd3+. For NNO films exhibiting a sharp MIT, Ni 3d electron localization and concurrent existence of Ni 3d8 and Ni 3d8L[combining low line]2 states are responsible for the observed transition. At temperatures below the MIT the O 2p-O 2p hole correlation is strong enough to split the O 2p band stabilizing insulating phase. Temperature and thickness dependent differences observed in the site-selective XANES data are discussed in terms of possible mechanisms for the MIT (negative charge-transfer type).

7.
Sci Rep ; 7: 41264, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120907

RESUMO

The change in electronic structure of extremely small RhxCuy alloy nanoparticles (NPs) with composition variation was investigated by core-level (CL) and valence-band (VB) hard X-ray photoelectron spectroscopy. A combination of CL and VB spectra analyses confirmed that intermetallic charge transfer occurs between Rh and Cu. This is an important compensation mechanism that helps to explain the relationship between the catalytic activity and composition of RhxCuy alloy NPs. For monometallic Rh and Rh-rich alloy (Rh0.77Cu0.23) NPs, the formation of Rh surface oxide with a non-integer oxidation state (Rh(3-δ)+) resulted in high catalytic activity. Conversely, for alloy NPs with comparable Rh:Cu ratio (Rh0.53Cu0.47 and Rh0.50Cu0.50), the decreased fraction of catalytically active Rh(3-δ)+ oxide is compensated by charge transfer from Cu to Rh. As a result, ensuring negligible change in the catalytic activities of the NPs with comparable Rh:Cu ratio to those of Rh-rich and monometallic Rh NPs.

8.
Phys Chem Chem Phys ; 18(20): 13844-51, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27146607

RESUMO

Interfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive. Here, we report evidence for the electronic reconstruction in both insulating and conducting LaAlO3/SrTiO3 heterointerfaces revealed by O K-edge X-ray absorption spectroscopy. For the insulating samples, the O K-edge XAS spectrum exhibits features characteristic of electronically active point defects identified as noninteger valence states of Ti. For conducting samples, a new shape-resonance at ∼540.5 eV, characteristic of molecular-like oxygen (empty O-2p band), is observed. This implies that the concentration of electronic defects has increased in proportion with LaAlO3 thickness. For larger defect concentrations, the electronic defect states are no longer localized at the Ti orbitals and exhibit pronounced O 2p-O 2p character. Our results demonstrate that, above a critical thickness, the delocalization of O 2p electronic states can be linked to the presence of oxygen vacancies and is responsible for the enhancement of conductivity at the oxide heterointerfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...